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Recently Flachet al. [Phys. Rev. Lett.88, 184101(2002)] used a symmetry analysis to predict the appear-
ance of directed energy current in homogeneously spatially extended systems coupled to a heat bath in the
presence of an external ac fieldEstd. Their symmetry analysis allowed them to make the right choice ofEstd
so as to obtain symmetry breaking which causes directed energy transport for systems with a nonzero topo-
logical charge. Their numerical simulations verified the existence of the directed energy current. They argued
that the origin of their strong rectification in the underdamped limit is due to the excitation of internal modes
and their interaction with the translational kink motion. The internal mode mechanism as a cause of current
rectification was also proposed by Salerno and Zolotaryuk[Phys. Rev. E.65, 056603(2002)]. We use a
rigorous collective variable for nonlinear Klein-Gordon equations to prove that the rectification of the current
is due to the excitation of an internal modeGstd, which describes the oscillation of the slope of the kink, and
due to a dressing of the bare kink by the ac driver. The internal modeGstd is excited by its interaction with the
center of mass of the kink,Xstd, which is accelerated byEstd. The external fieldEstd also causes the kink to be
dressed. We derive the expressions for the dressing and numerically solve the equations of motion forGstd,
Xstd, and the momentumPstd, which enable us to obtain the explicit expressions for the directed energy current
and the ac driven kink profile. We then show that the directed energy current vanishes unless the slopeGstd is
a dynamical variable and the kink is dressed by the ac driver.
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I. INTRODUCTION

In a recent paper Flachet al. [1] studied the appearance of
directed energy currents in homogeneous spatially extended
systems described by nonlinear field equations coupled to a
heat bath in the presence of an external ac fieldEstd. As
pointed out in Ref.[1], rectifying energy transform using
fluctuations has been studied in connection with such prob-
lems as molecular motors in biological systems[3], electrical
currents in superlattices[4–7], voltages in Josephson junc-
tion coupled systems[8–10], and other problems.

The authors of Ref.[1] showed by a symmetry analysis
that the correct choices ofEstd lead to directed energy trans-
port for nonlinear Klein-Gordon systems with a nonzero to-
pological charge. They used numerical simulations of the ac
driven Klein-Gordon equation which confirmed their predic-
tions which generalized recent rigorous theories of currents
generated by broken time-space symmetries to the case of
interacting many-particle systems[11,12]. They did this by
replacing the fluctuations as a superposition of ac driving
fields and uncorrelated white noise. They also showed the
persistence of directed currents in the Hamiltonian limit of
systems exposed to ac fields but decoupled from the heat
bath. The authors of Ref.[1] then argued that the origin of
the observed strong rectification in the underdamped limit is
due to the nonadiabatic excitation of internal kink modes and
their interaction with the translational kink motion.

In this paper we use a rigorous collective variable(CV)
theory for nonlinear Klein-Gordon equations derived in Refs.
[13,14] to prove that an external ac field causes the CV’s for
the center of massXstd and the slopeGstd to become time
dependent and to interact with each other. The ac driver in
addition to inducing time dependence inXstd, the center of

mass of the kink, and the slopeGstd, causes the kink to be
dressed by phonons. The dressing changes the shape of the
kink and increases the coupling ofGstd to Xstd. We show that
the nonvanishing of the dressing is a necessary condition for
breaking time inversion symmetry of the energy current.
However, the dressing of the kink alone in the absence of a
time dependent collective variableGstd cannot cause current
rectification. Consequently, we prove that the existence of
the time dependence ofGstd and the dressingxstd are neces-
sary for time inversion symmetry breaking.

In Sec. II we derive the equations of motion forXstd and
Gstd including the terms due to the dressing of the kink by
phonons. We present our results for the solutionsXstd and
Gstd, and for the generation of directed energy currents in
Sec. III, and in Sec. IV and we discuss our results. The
derivation of the dressingx is given in the Appendix.

II. DERIVATION OF CV EQUATIONS OF MOTION

Before deriving the CV equations of motion used in this
paper, we will make a few remarks about CV treatments of
the Klein-Gordon equations. The first approach, which is de-
rived in Refs.[13,14] and used in this paper, is to treat the
center of massXstd and the slopeGstd as collective variables
which satisfy coupled second-order differential equations,
which also depend on the dressing of the kink. In this ap-
proach the equations of motion forXstd and Gstd are not
manifestly relativistic invariant. What has been proven is that
when the solutionsXstd and Gstd are inserted in the kink
ffXstd ,Gstdg f satisfies the relativistic invariant nonlinear
Klein-Gordon equation. An analogous well-known example
of a nonmanifestly relativistic case is the use of the nonrel-
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ativistic Coulomb gauge which leads to the relativistic solu-
tion Estd and Bstd of Maxwell’s equations. The second ap-
proach would be to consider a single CV,Xstd. The equation
of motion for Xstd is fourth order in time because the La-

grangian contains the second derivativeẌstd. The Lagrangian

of a theory that contains a second derivativeẌstd leads to

equations of motion that contain the fourth derivativeẊ̇̇̇std.
The fourth-order equation forXstd has the same number of
degrees of freedom as the equivalent CV theory for two vari-
ables which consists of two coupled second-order equations
for Xstd andXstd.

We outline the derivation of the equations of motion for
the collective variablesXstd and Gstd which are derived in
detail in Refs.[13,14]. The damped nonlinear sine-Gordon
(SG) equation for the fieldf in the presence of an external
potentialVsfd is

f,tt − f,xx + sin f + bf,t = −
] V

] f
, s1d

wherebf,t is the damping due to the heat bath, and where
we are using dimensionless variables where the velocity of
the phonons isc=1. We introduce the collective variables by
writing the solutionf of Eq. (1) in the form

fsx,td = sfjstdg + xfjstdg, s2d

wherej;Gstdfx−Xstdg and the single kink solutionsfjstdg
is

sfjstdg = 4 tan−1exphGstdfx − Xstdgj, s3d

andxfjstdg is the dressing of the kink by phonons due to the
external potentialVsfd which for the applied ac field of this
paper is given by

Vsfd = se1cosvt + e2cosf2vt + ugdf„jstd… ; f1f„jstd….
s4d

u is an arbitrary phase, ande1 ande2 are perturbation param-
eters, i.e., we solve forf to first order ine1 ande2. The CV’s
are the center of massXstd and the slope of the kink evalu-
ated at its center is 2Gstd. In Ref. [2] a directed kink motion
for the SG was obtained numerically for the first time using
Vsfd in Eq. (4) for a wide range of momenta with an analytic
approach for small momenta.

The equations of motion forX andG each contain many
terms proportional to integrals ofx, its time derivatives and
spatial derivatives.x is a solution of the linearized ac driven
SG equation and is proportional toe1 ande2. In the Appendix
we solve forx. The solution forx is

x =
4

p
fstdsech2j, s5d

where

fstd = se1/2dcosvtH 1 − v

b2 + s1 − vd2 +
1 + v

b2 + s1 + vd2J
+ se2/2dcoss2vt + udH 1 − 2v

b2 + s1 − 2vd2

+
1 + 2v

b2 + s1 + 2vd2J .

Sincex is an even function ofj many of the terms in Eqs.

(2.4a) and(2.5a) of Refs.[13,14] for Ẍ andG̈ that depend on
integrals ofx vanish. The only terms which survive are

s1 − bXdMXfẌ + ẊsĠ/Gd + bẊg = 2pf1 + G2ks8ux9ls1 − Ẋ2d

− sĠ/Gd2ks8uj2x9l − 2sĠ/Gd

3s ḟ/fdks8ujxl − sG̈/Gd

3ks8ujxl, s6d

where MX;Gks8 us8l=8G, bX;sG /MXdks9 uxl=0 and
wherekf ugl;efpsjdgsjddj. The corresponding equation for

G̈ is

s1 − bGdMGfG̈ − 3Ġ2/2G + sMX/2Gds1 − Ẋ2d + bĠg

= s2ẊĠ/G2dkjs8ux9jl + 2sẊ/Gds ḟ/fdkjs8ux8l + sẌ/Gd

3kjs8ux8l, s7d

where MG;G−3kjs8 ujs8l=s2p2/3G3d and bG

;sG3/MGd−1kj2s9 uxl=0.

We next eliminate theG̈ term in Eq.(6) and theẌ term in
Eq. (7) by using the zeroth order ine1, ande2 equations for

Ẍ andG̈. The elimination is justified because the correspond-
ing terms are both multiplied byx which is already first
order ine1, ande2.

The zeroth-order expression forẌ is Ẍ=−ẊsĠ /Gd and for

G̈ is G̈=3Ġ2/2G−MXs2GMGd−1s1−Ẋ2d. When we substitute

for Ẍ in Eq. (7), we obtain

G̈ + bĠ = s3Ġ2/2Gd + s6/p2dG3s1 − Ẋ2d + s3/2p2d

3f8ĠẊs2kjs8ux9l − kjs8ux8ld + 8ḟG2Ẋkjs8ux8lg,

s8d

and when we substitute forG̈ in Eq. (6) we obtain

MXfẌ + ẊsĠ/Gd + bẊg = 2pf1 − 2ḟsĠ/Gdks8jux8l + G2s1 − Ẋ2d

3fks8ux9l − s6/p2dks8ujx8lg

− sĠ/Gd2sks8uj2x8l − 3/2ks8jux8ld.

s9d

The momentumP conjugate toX is P=MXẊ=8GẊ. Conse-

quently we can write Eq.(8) for Ẍ in terms ofP, i.e.,
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dP

dt
+ bP = 2pf1 − 2ḟsĠ/Gdks8jux8l + SG2 −

P2

64
DSks8ux9l

−
6

p2ks8ujx8lD − S Ġ

G
D2

sks8uj2x9l − 3/2ks8jux8ld,

s10d

and Eq.(8) for G̈ in terms ofP becomes

G̈ − s3Ġ2/2Gd − s6/p2dGf1 − G2 + sP/8d2g + bĠ

= s3/2p2dfPĠs2kjs8ux9l − kjs8ux8ld + GPs ḟ/fdkjs8ux8lg.

s11d

Finally after evaluating the integrals and replacingẊ2 by
P2/64 we obtain the final form of our equations of motion
for Pstd andGstd:

Ṗ + bP − 2pf1 = fstdh0.47s8/pdsĠ/Gd2 − s8/3df ḟstd/fstdgsĠ/Gd

− s8/p2dfG2 − sP/8d2gj s12d

and

G̈ + bĠ − 3Ġ2/2G − s6/p2dGf1 − G2 + sP/8d2g

= fstds2p2d−1hs5/2 −p2/16dPĠ − f ḟstd/fstdgPGj.

s13d

Before solving the equations of motion forP andG it is
worth making a few remarks about the properties of the
coupled equations. In Eq.(12) the ac driverf1std directly

drives Ṗ while in Eq. (13) for G̈ the ac driverf1std does not

directly drive G̈ because theG mode]s /]G is orthogonal to

the ac driver. However, bothṖ and G̈ see the ac driver indi-
rectly through the dressingx which is proportional tofstd
[Eq. (A7)], which also depends on the two frequenciesv and
2v. As long asv,0.5 the phonon radiation is small. In this
paper we consider only frequencies which are much less than
1, which is the beginning of the lower band edge in the units
of this paper. Consequently in this paper the emission of
phonons is negligible. Since there are no modes ofXstd and
Gstd in the band gap of the SG, there is no excitation of
internal gap modes by the ac driver as there is, e.g., inf4 and
the double sine-Gordon. The dressingx which is propor-
tional to e changes the shape modes tos,X+x,X and tos,G
+x,G in addition to changing the frequency ofP and G di-
rectly.

Before discussing the results we discuss the symmetries
of the coupled equations(12) and(13). The first symmetry is
referred to as the shift symmetry of the driver which isP
→−P and t→ t+t /2, provided f1std=−f1st+t /2d and fstd
=−fst+t /2d are always shift symmetric if and only if a Fou-
rier expansion contains only odd terms. Thusf1std and fstd in
Eqs. (12) and (13) always violate shift symmetry. A second
symmetry is time inversion symmetry, i.e.,P→−P when t
→−t and b=0. Equations(12) and (13) satisfy time inver-
sion symmetry whenb=0 andu=0, ±np. Whenb is small,
time inversion is approximately satisfied.

III. RESULTS OF SIMULATIONS

In this section we present the computer solutions of Eqs.
(12) and (13) for Gstd, Pstd, and for the time average of the
energy current. In our units the energy currentJstd is equal to
Pstd because

Jstd ; −E
−`

`

s,tsjds,xsjddx= 8GẊ = Pstd,

where sfjg=4 tan−1exp(Gstdfx−Xstdg). Consequently the
time average ofJstd,kJstdl, is equivalent to the time average
of Pstd,kPstdl.

In Fig. 1 we show the results forkPstdl for a range of
valuesv, b, e1, ande2 which show clearly the directed en-
ergy current as a function ofu. We see that there is symmetry
breaking for all the sets of parameter values. In Fig. 2 we
show kPstdl as a function ofu for fixed values ofv ande1

=e2, and various values ofb. If bÞ0, then time inversion
symmetry is not valid. However asb goes to zero, time
inversion symmetry is approximately restored atu=0, ±np.
Thus we observe for smallb, as b, decreases, exactly the
same behavior as in Fig. 1 of Ref.[1], that is, the smaller the
b the larger is the value ofkPsu=0dl, but the smaller is the
value of u at which kPsudl=0. The values in Fig. 2 atu=0

FIG. 1. This figure demonstrates symmetry breaking, i.e., the
nonvanishing ofkPstdl as a function ofu for various values of the
parametersv, e, and b. Solid curve,v=0.1, e1=e2=0.03, andb
=0 (the curve is multiplied by 0.15); dashed curvev=0.3,e1=0.3,
e2=e1/Î3, andb=0.2; dotted curve,v=0.1, e1=e2=0.05, andb
=0.12; dash-dotted curve,v=0.25, e1=0.16, e2=e1/Î2, and b
=0.15.kPstdl has the units of momentum andu is in radians.

FIG. 2. kPstdl as a function ofu for v=0.1, e1=e2=0.03 for
various values ofb show a monotonic decrease of the amplitude of
kPstdl as the dampingb increases. Solid curve,b=0.02; dashed
curve,b=0.05; dotted curve,b=0.12. In this simulationkPstdl de-
creases asb increases but the values ofkPstdl are so small that they
cannot be distinguished on the figure.kPstdl has the units of mo-
mentum andu is in radians.
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are kPstdl=0.0008 whenb=0.12, kPstdl=0.002 whenb
=0.05, andkPstdl=0.005 whenb=0.02.

In the three typical examples ofPstd andGstd (Figs. 3–5)
we have selected the shapes and magnitudes vary consider-
ably. The shapes of thePstd andGstd curves show the effect
of being driven by an ac driver with two frequencies which
causes the curves to vary in amplitude and shape when we
vary the parametersv, e1, e2, andb. The changes in shape of
Gstd are often striking becauseGstd is a very nonlinear oscil-
lator which has a complicated response to the ac driver and
the dressingx, whereas in lowest order the equation forPstd
is linear. Generally the magnitudes of bothGstd and Pstd
increase with increases in the strength ofe1 and e2. The
variable Gstd oscillates about an average value ofkGstdl
which is greater thanG0=1, the unperturbed kink value ofG.
It usually also takes instantaneous values less than 1. The
relative change in slope,DG /G, varies from a few percent to
as much as 100% and is strongly dependent on the magni-
tude of e1 and e2. Large values ofDG /G represent large
distortions of the shape of the kink. When we comparePstd
andGstd for the kink dressed byx with the bare kink we find
a strong dependence on the phaseu which leads to different
shapes and amplitudes ofPstd and Gstd for different u. For
example, in Fig. 5 forv=0.1, b=0.02, e1=e2=0.03, andu
nearu=0, ±np the slopeGstd of the dressed kink is a pattern
of single peaks while for the bare kink with the same param-
etersGstd is a pattern of double kinks. On the other hand for
u appreciably different fromu=0, ±np, e.g.,u=1.61−p the
differences in shape ofPstd between the bare and dressed
kinks are relatively minor. At the same time although the

shapes ofGstd are qualitatively similar the bare kinks have
appreciably reduced amplitudes ofGstd.

IV. DISCUSSION

The ac driver causes the center of massX and the slopeG
to become time dependent and the kink to be dressed by
phonons given by the expressionxstd=s4/pdfstdsech2 jstd.
The dressingx which is not a CV internal mode can be
observed as a modulation of the structure of the kinks. We
proved that the existence of a directed energy current arises
from the existence of the internal degree of freedomGstd
combined with the dressingxstd. We found that the directed
energy current vanished whenG was set equal toG0. When

we setx=0 in Eq. (10) for Ṗ the right-hand side vanishes
and we obtain

Ṗ + bP = 2pf1.

The infinite time average of this equation vanishes when we
use the fact that the thermal average of the initial value ofP
vanishes. Thus there is no directed current in the SG unless
the slope depends ont and the kink is dressed byx.

We observe in the computation ofkPstdl that the kink sees
the heat bath only through the damping term −bkPstdl, i.e.,
kPstdl does not see the fluctuations of the heat bath. The
reason is that when we represent the bath as a generalized
Fokker-Planck equation and calculatekPstdl the damping
term contributes −bkPstdl because the damping is repre-
sented byb] /]P. However the fluctuation term is propor-
tional to a second derivative]2/]P]P and thus gives a van-
ishing contribution tokPstdl. Note a fluctuation such askP2l
or kPstdPl would see both the damping term and the bath
fluctuations.

In conclusion, we have proven that the symmetry break-
ing that leads to a directed energy current in the ac driven SG
is generated by the existence of the time dependence of the
slopeGstd and by the dressingxstd. In Ref. [15], Salerno and
Quintero showed that a double SG showed ratchet behavior.
In Ref. [16], Marchesoni obtained a directed kink transport
by the sinf potential for e2=0. Costantiniet al. [17] ob-
served ratchet behavior in ac driven asymmetric kinks.

FIG. 4. Pstd and Gstd for the parametersv=0.3, b=0.2, e1

=0.3, e2=e1/Î3, andu=1.61−p. kPstdl is nonzero and the slope
Gstd has a multiple frequency oscillation aboutkGstdl.G0 with an
amplitude changeDG / kGl,50%. Pstd has the units of momentum
andGstd has the units of inverse length.

FIG. 5. Pstd and Gstd for the parametersv=0.1, b=0.02, e2

=e1=0.03, andu=p. kPstdl=0 as is required byu=p. Gstd has a
two-frequency oscillation aboutGstd.G0 with only an amplitude
change ofDG / kGl,4%. The relatively weak response ofPstd and
Gstd is due to the smallness of the drivere. Pstd has the units of
momentum andGstd has the units of inverse length.

FIG. 3. The energy currentPstd and the slope of the kinkGstd
for the parametersv=0.25, b=0.15, e1=0.16, e2=e1/Î2, and u
=1.61−p. Both curves show the effect of two driving frequencies.
The time average ofPstd is nonzero andGstd has a multiple fre-
quency oscillation aboutkGstdl greater thanG0 with an amplitude
changeDG / kGl,20%. Pstd has the units of momentum andGstd
has the units of inverse length.
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APPENDIX

We calculate the dressingx generated by the ac driven
f1std in the linear approximation, i.e., the lowest order ine1,
e2 and by using the Green’s function of the linearized SG
equation in the presence of a soliton Eq.(C5) of Ref. [14].
The formal solution forx is

xsjd = 2 ReE
−`

`

dkfVskdg−1cksjdE
−`

`

dj8ck
psj8d

3 E
0

`

dt8 sin Vskdst − t8de−bst−t8df1st8d, sA1d

whereVskd;s1+k2d1/2 and the eigenfunctions of the linear-
ized SG are

cksjd = s2pd−1/2eikjfik − tanhjg. sA2d

The j8 integral is

E
−`

`

dj8cksj8d = − ikE
−`

`

dj8coskj8−E
−`

`

dj8sin kj8tanhj8.

sA3d

The first integral is an irrelevant constant which we can ne-
glect. Integrating the second integral by parts we obtain

− si/kdE
−`

`

coskj8sech2 j8dj8 = − si/kdFskd, sA4d

whereFskd;pkf2 sinhspk/2dg−1 which decays rapidly with
largek. Thek integration in Eq.(A1) is

Res− idE
−`

`

dk eikjfik − tanhjgk−1Fskd

=E
−`

`

coskjFskddk

− sp/2dtanhjE
−`

`

dk sin kjfsinhspk/2dg−1

= s2/pdssech2j − tanh2jd

=
4

p
sech2j, sA5d

where we have dropped the irrelevant constants2/pd. The
time integral in Eq.(A1) is fstd where

fstd ; E
0

`

dt8sin Vskdst − t8de−bst−t8df1st8d

= se1/2dcosvtH Vskd − v

b2 + fVskd − vg2 +
Vskd + v

b2 + fVskd + vg2J
+ se2/2dcoss2vt + udH Vskd − 2v

b2 + fVskd − 2vg2

+
Vskd + 2v

b2 + fVskd + 2vg2J . sA6d

In this paper we only consider values ofv which are
appreciably less than 1. WhileVskd=s1+k2d1/2 where in our
units the lower band edge has the value 1. Consequently with
v’s in this paper as in Ref.[1], there is essentially no radia-
tion of SG phonons generated by the ac driver but only a
dressing of the soliton that is localized on the soliton. The
presence of the SG phonons would not qualitatively alter the
symmetry breaking but for the ac driver frequencies used in
this paper the SG phonons would not be observable because
they would occur only in very high orders of perturbation
theory. SinceFskd decreases rapidly with increasingk and
v!1 we can treatfstd as effectively independent ofk and
equal to

fstd = se1/2dcosvtH 1 − v

b2 + s1 − vd2 +
1 + v

b2 + s1 + vd2J
+ se2/2dcoss2vt + udH 1 − 2v

b2 + s1 − 2vd2

+
1 + 2v

b2 + s1 + 2vd2J . sA7d

Finally we have

x = s4/pdfstdsech2j, sA8d

with fstd given by Eq.(A7).
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